Dynamic and Static Behavior of a Flexible Fuel Hose in Zero-G
Status: Completed
Start Date: 2013-04-05
End Date: 2016-04-05
Description: The NASA/Goddard Space Flight Center Satellite Servicing Capabilities Office (SSCO) will conduct an investigation of the behavior of a flexible fuel hose in a near-zero gravity environment. The inner core of these types of fuel hose consist of a long corrugated metal tube that is very stiff to torsion along its longitudinal axis. As a result, this type of hose can be a challenge to manipulate, sometimes resulting in the buildup of forces and torques in a robot arm, and occasionally resulting in breakage of the inner core of the fuel hose. Laboratory tests have produced handling measures to prevent this from occurring, but gravitational sag prevents a clear understanding about the effectiveness of these measures in the microgravity of Earth’s orbit.
This effort is related to T0009-P Autonomous Robotic Capture to Validate Ground-Based Contact Dynamics Simulation. Problem Statement This work is in support of the development and validation of technology required for future missions to service and refuel a satellite in space, allowing the reuse and extension of valuable hardware consisting of potentially hundreds of other spacecraft in the geosynchronous orbit. The experiment allows us to gather experimental data to allow the creation and correlation of mathematical models of the dynamical behavior of the hose in near-zero gravity environments. Technology Maturation The current state of the hardware is at TRL 4. By flying on the Parabolic Aircraft platform, the technology can be matured to TRL 5, in that the brassboard-level fidelity Hose will have flown in a relevant (microgravity) environment. It will provide understanding to true loads, deflections, and dynamic characteristics of the Hose in its flight operating environment.
This effort is related to T0009-P Autonomous Robotic Capture to Validate Ground-Based Contact Dynamics Simulation. Problem Statement This work is in support of the development and validation of technology required for future missions to service and refuel a satellite in space, allowing the reuse and extension of valuable hardware consisting of potentially hundreds of other spacecraft in the geosynchronous orbit. The experiment allows us to gather experimental data to allow the creation and correlation of mathematical models of the dynamical behavior of the hose in near-zero gravity environments. Technology Maturation The current state of the hardware is at TRL 4. By flying on the Parabolic Aircraft platform, the technology can be matured to TRL 5, in that the brassboard-level fidelity Hose will have flown in a relevant (microgravity) environment. It will provide understanding to true loads, deflections, and dynamic characteristics of the Hose in its flight operating environment.
Benefits: The information from flight testing is useful to future space missions that need to be refueled or serviced. Future Customers The maturation of the Hose technology is an important part in the development flow of the SSCO project’s overall technology development plan, and a deadline of August 2013 is required for the results of this experiment.
This flight opportunity will be used to develop a dynamical model of the as-tested flexible hose. This model will be incorporated into Freespace, a NASA/GSFC developed high-fidelity dynamics and visualization package. Freespace is available as open-source software to the
This flight opportunity will be used to develop a dynamical model of the as-tested flexible hose. This model will be incorporated into Freespace, a NASA/GSFC developed high-fidelity dynamics and visualization package. Freespace is available as open-source software to the
Lead Organization: Jackson and Tull