Subsurface Prospecting by Planetary Drones

Status: Completed

Start Date: 2015-06-17

End Date: 2016-06-17

Description: The proposed program innovates subsurface prospecting by planetary drones to seek a solution to the difficulty of robotic prospecting, sample acquisition, and sample characterization at multiple hazardous locations in a single mission. Innovation focuses on a specific, challenging scenario: sub-surface access of multiple lava tubes by drones far enough from Earth for speed-of-light latency to preclude direct human control. The technology will be broadly applicable to resource prospecting in cold traps, dark craters, cryovolcanoes, asteroids, comets, and other planets. The technology is also applicable to Earth-relevant problems such as the detection of poisonous and explosive gases and flammable dust in mines; and surveying urban canyons; exploring bunkers and caves. The proposed innovation is the development of Anytime Motion Planners that can generate feasible guidance routines to accomplish subsurface prospecting by planetary drones. Anytime Motion Planners are algorithms that can quickly identify an initial feasible plan, then, given more computation time available during plan execution, improve the plan toward an optimal solution. In addition to Anytime Motion Planners, optimal guidance routines will also be innovated in this work by formulating the Generic Autonomous Guidance Optimal Control Problem (Problem G&C) (Pavone, Acikmese, Nesnas, & Starek, 2013) as a convex optimization problem and employing interior-point methods to solve the resulting problem to global optimality. This work will determine whether optimal solutions may be computed quickly enough to be useful in practice.
Benefits: The immediate markets within NASA are for exploration and science missions to surface destinations on the Moon, Mars, and asteroids. The proposed innovations in guidance improve mission capability by enhancing landing and flying precision; enabling access to previously inaccessible terrain; providing accurate autonomous target-relative navigation; modeling a target onboard a spacecraft; and providing a flight-ready, power efficient solution to TRN. Potential applications to NASA include: (1) Resource Prospector Mission, currently in Phase A with a target launch in 2019, has a $250M budget reserved. Science return is dependent on landing in an identified region with high volatile content and near regions of permanent dark. Polar terrain on the Moon is hazardous and lighting varies locally, so precise landing relative to terrain is exceptionally important. (2) The Mars Science Lab (total project budget of $2.5B with ~$550M expended on operations ) and Mars 2020 (budget $1.5B ). The technology developed by this research could enhance landing precision and enable landing at the location of highest value, enhancing mission science return. (3) At least six planned NASA missions – Asteroid Redirect, Comet Surface Sample Return, Lunar South Pole-Aitken Basin Sample Return, Lunar Geophyisical Network, Mars Astrobiology Explorer-Cacher (Max C), and Venus In-Situ explorer – could be enhanced by this technology.

Astrobotic's proposed approach to reaching other commercial markets is to target the most likely candidates for market acceptance and profitability in Phase I and Phase II, particularly UAV application for defense and surveying. This technology may also be used for the detection of poisonous and explosive gases and flammable dust in mines; surveying urban canyons; and exploring bunkers and caves.

Lead Organization: Astrobotic Technology, Inc.