Fast Light Enhanced Active Gyroscopes, Accelerometers and Fiber- Optic Sensors
Status: Completed
Start Date: 2016-04-27
End Date: 2018-08-31
Description: The fast-light effect, produced by anomalous dispersion, has emerged as a highly promising mechanism for enhancing the sensitivity of many devices. It is a potentially disruptive technology with the prospect of revolutionizing the field of precision metrology. We will develop this technology in two parallel paths: A rubidium vapor Raman laser-based Active Fast Light Optical Gyroscope/Accelerometer (AFLOGA), and a fiber Brillouin laser based Active Fast Light Fiber-Optic Sensor (AFLIFOS). Both of these systems will be capable of acting as gyroscopes and accelerometers simultaneously. In addition, the AFLIFOS will be a very sensitive sensor for strain and temperature. In final form, the Superluminal Inertial Measurement Units (SIMU) produced with these technologies should be more than four orders of magnitude more sensitive than current state-of-the-art inertial measurement units. In Phase II, we will demonstrate, test, and characterize a laboratory-scale AFLOGA, then use the knowledge gained to design, construct, and test a compact AFLOGA that will fit within a 10 cm by 30 cm by 30 cm case. A design for a complete, six-axis SIMU will be developed with a footprint comparable to commercial inertial measurement units, but with dramatically higher sensitivity. In parallel, we will design, construct, and test a laboratory-scale AFLIFOS system. Finally, a theoretical investigation will be carried out to develop a Master Equation based model for quantum noise limit on the enhancement in sensitivity using a superluminal laser sensor. Northwestern University will serve a subcontractor for this project.
Benefits: The gyroscopes and accelerometers developed in this program will have substantially improved sensitivity and reduced SWaP compared to conventional technology. These will find use for navigation of NASA space vehicles of all sorts, where SWaP concerns and precise navigation are critical. These technologies may also enable an array of new scientific missions, such as gravitational mapping of subsurface geologic features and gravity wave detection. An ultrasensitive gyroscope may also enable a critical test of general relativity via measurement of the gravitational frame dragging effect to an unprecedented accuracy. An ultra-sensitive fiber-optic sensor may be enable precise measurement of strain, temperature,and other effects under conditions relevant to NASA missions.
The gyroscopes, accelerometers, and sensors developed in this program will enable improved navigation accuracy at reduced SWaP cost, much as they do in NASA space vehicles. In addition, they can be used in atmospheric and terrestrial vehicles and ordnance for positioning and navigation in GPS-denied environments, a critical need for many military applications. The improved SWaP performance of these systems would be particularly useful in UAV navigation. High-sensitivity accelerometers can also be used in improved vibration sensors, with an array of applications in seismometry and subsurface explosion detection for nuclear non-proliferation applications. Improved strain and displacement sensors would also have a wide array of applications in monitoring the structural health of buildings and infrastructure.
The gyroscopes, accelerometers, and sensors developed in this program will enable improved navigation accuracy at reduced SWaP cost, much as they do in NASA space vehicles. In addition, they can be used in atmospheric and terrestrial vehicles and ordnance for positioning and navigation in GPS-denied environments, a critical need for many military applications. The improved SWaP performance of these systems would be particularly useful in UAV navigation. High-sensitivity accelerometers can also be used in improved vibration sensors, with an array of applications in seismometry and subsurface explosion detection for nuclear non-proliferation applications. Improved strain and displacement sensors would also have a wide array of applications in monitoring the structural health of buildings and infrastructure.
Lead Organization: Digital Optics Technologies, Inc.