Autonomous Contingency Detection and Reaction for Unmanned Aircraft

Status: Completed

Start Date: 2016-06-10

End Date: 2016-12-09

Description: Unmanned aircraft systems (UAS) and, in particular, intelligent, autonomous aircraft operating in the national airspace system (NAS) have the potential to significantly impact modern society. They could perform difficult and dangerous tasks such as fire fighting, border patrol, and search and rescue, and dull tasks such as surveying crops. The elimination of a cockpit and pilot makes UAS operation attractive from an economic standpoint. In addition, much of the technology used for autonomy could benefit manned flight as a pilot's aid to help in tasks such as landing on an offshore oil rig. Open questions remain, however, about how unmanned autonomous aircraft can be safely incorporated into the NAS. UAS operating in the NAS must (1) sense and avoid other vehicles and follow air traffic commands, (2) avoid the terrain and land safely without operator intervention, (3) react to contingencies such as engine-out and lost-link scenarios, and (4) be reliable (by FAA airworthiness standards) and cost-effective. The current approach for UAS integration relies on radio links and the operator's acuity to direct them safely. Lost links, however, are unavoidable. UAS must have the capability to make their own decisions based on information available via databases and any information discovered by onboard sensors. Near Earth Autonomy proposes to develop technologies and capabilities leading to fully autonomous systems that are able to discover and adapt to unpredicted changes in their environment, and yet still accomplish the mission, with minimal or no human involvement. This proposal focuses on developing an Autonomous Contingency System in the form of sensors and computer software that will enable UAS of the future to be operable safely in the NAS. Additionally, the proposal addresses how the technical challenges can be met and how the technology developed can be shown to be both trustworthy and commercially viable for general aviation.
Benefits: Near Earth envisions the initial NASA market to be primarily units for testing and validation at both the system level and at the aircraft level. The autonomous capabilities that Near Earth proposes will contribute to NASA's testing and validation of the technologies and concepts for UAS operations in the NAS. Additionally, Near Earth's autonomous technology will provide an enhanced capability, enabling more comprehensive UAS flight-testing for NASA's collaborative efforts with the FAA to accommodate UAS operation in the Next Generation Air Transportation System. As the autonomous flight capabilities mature and are integrated into aircraft, they will be of direct use to NASA in their flight testing of ground-based air navigational aids and guidance systems located in remote areas, such as Antarctica. Near Earth's autonomous technology will enable greater utilization of UAS in other NASA areas, particularly for experimentation and testing in NASA?s various research centers.

Government agencies, both military and civilian, will comprise a much larger market for the technology. The commercial sector will eventually be the largest market sector. A recent market analysis in Composites World magazine, drawing on work from both the Teal Group and AUVSI, indicates a global military market of approximately 57,000 UAS, with about 19,000 for the US military services--primarily in the reconnaissance and attack configurations, with growing utilization of utility and cargo configurations. Additionally, the analysis forecasts a commercial market of as many as 160,000 unmanned aircraft, most of which would be in the public safety and precision agriculture segments.

Lead Organization: Near Earth Autonomy, Inc.