MEMS Gyroscope with Interferometric Detection
Status: Completed
Start Date: 2012-04-30
End Date: 2014-04-29
Description: The proposed innovation is a novel MEMS gyroscope that uses micro-interferometric detection to measure the motion of the proof mass. Using an interferometric detection technique enables the measurement of proof mass motion with resolution equal to or better than systems that have CMOS detection electronics fabricated on the MEMS substrate. Furthermore, this detection technique can be applied to MEMS designs fabricated in a variety of processes, freeing up more design space and enabling a MEMS design not limited by MEMS fabrication constraints. This combination of factors allows for a broader design space and thus the sense resonant frequency will not have to be closely matched to the drive resonant frequency. This separation of frequencies results in a device that is inherently more stable and easier to manufacture. Specific objective of phase II are: (1) Produce a low cost, low power MEMS gyroscope using interferometric sensing that meets the needs for NASA applications. (2) Deliver multiple prototypes to NASA and other potential customers for evaluation. (3) Demonstrate that the gyroscope prototypes have acceptable performance. The challenges to successfully developing this technology are substantial. Advanced MEMS fabrication technology, innovative micro-optical designs coupled with novel MEMS packaging, and design and simulation techniques will enable successful development of this technology.
Benefits: Applications within NASA: The proposed technology will result in a small and low power inertial sensor capable of providing tactical grade performance comparable to a fiber optic gyro. This technology will benefit metric tracking of launch vehicles in situations where GPS signals are unreliable. Furthermore, the small size of this technology will benefit small space craft in navigation and guidance. For aerospace applications, MEMS scale gyroscopes with performance characteristic similar to that of fiber optic gyros will enable high performance navigation in small unmanned systems.
Non-NASA Applications: Successful development of this project lays the foundation for commercial impact in a number of areas. For navigation GPS is commonly used in applications where fiber optic gyroscopes or ring laser gyroscopes are either too large or expensive. In many situations GPS signals are unreliable (such as in areas where they could be jammed or indoors) or they are unavailable such as underground. Petroleum and gas exploration, mining, aerospace systems and consumer electronic devices will benefit from the development of technology. In petroleum and gas exploration, directional drilling and wellbore navigation will benefit from the development of robust and stable MEMS scale gyroscopes capable of operation while drilling. For consumer applications this technology will enable personal navigation in areas where GPS signals are unreliable.
Non-NASA Applications: Successful development of this project lays the foundation for commercial impact in a number of areas. For navigation GPS is commonly used in applications where fiber optic gyroscopes or ring laser gyroscopes are either too large or expensive. In many situations GPS signals are unreliable (such as in areas where they could be jammed or indoors) or they are unavailable such as underground. Petroleum and gas exploration, mining, aerospace systems and consumer electronic devices will benefit from the development of technology. In petroleum and gas exploration, directional drilling and wellbore navigation will benefit from the development of robust and stable MEMS scale gyroscopes capable of operation while drilling. For consumer applications this technology will enable personal navigation in areas where GPS signals are unreliable.
Lead Organization: Fine Structure Technology LLC