Miniaturized Time Domain Terahertz Non Destructive Evaluation for In-Orbit Inspection of Inflatable Habitats and Thermal Protection Systems
Status: Completed
Start Date: 2011-02-18
End Date: 2011-09-29
Description: Picometrix's time-domain terahertz (TD-THz) non-destructive evaluation (NDE) technology could be used to inspect space flight structures such as inflatable space habitats, thermal protection systems (TUFI-type tiles, SOFI TPS), for voids, disbonds, and damage such as tearing and micron-meteorite impact. In this Phase I SBIR project, we propose to test the feasibility of three key technological changes which could substantially reduce the volume, mass, and power requirement of the TD-THz instrumentation, making it more suitable for use by an operator in space. The current instrumentation paradigm is that a multi-purpose TD-THz control unit is used to provide common drive, data acquisition, and analysis functionality to interchangeable sensors and imaging which connect to the control unit with a fiber-optic/electrical umbilical. However, the current COTS control unit is substantially larger and heavier than would be desirable for a space-flight capable unit. The proposed developments would enable a control unit for a hand held NDE imaging tool, sufficiently robust for spaceflight, no larger than a small shoebox. It should be possible to reduce the size of the control unit to approximately one sixth of the current values to, for example, 14 in. X 8 in. X 4 in and 10 pounds.
Benefits: Ceramics, foams, and polymer matrix composites are used in automobile and ships and many other consumer and industrial products. A compact TD-THz imaging system could be used inspect automobile dashboards, inspect for delamination of printed circuit boards, inspect of pipe insulation, as well as inspect manufactured parts such as pure plastic and paper products. A compact TD-THz imager benefits homeland security applications under development such as personnel and luggage inspection for concealed weapons and explosives (in luggage, shoes, etc.).
At the end of a successful Phase II, the goal would be to space qualify the compact control unit design in Phase III so that it could be used for in-orbit inspections of inflatable habitats and thermal protection systems. In addition, THz NDE instrumentation will be valuable in characterizing the aging and durability of aircraft and spacecraft materials and components. Materials include ceramics, foams, Kevlar, Zylon, and other non-conductive polymer matrix composites. Additional NDE applications include inspection of soft shell fan containment, thermal protection systems, and composite overwrap pressure vessels.
At the end of a successful Phase II, the goal would be to space qualify the compact control unit design in Phase III so that it could be used for in-orbit inspections of inflatable habitats and thermal protection systems. In addition, THz NDE instrumentation will be valuable in characterizing the aging and durability of aircraft and spacecraft materials and components. Materials include ceramics, foams, Kevlar, Zylon, and other non-conductive polymer matrix composites. Additional NDE applications include inspection of soft shell fan containment, thermal protection systems, and composite overwrap pressure vessels.
Lead Organization: Picometrix, LLC